Well, the weather finally warmed up here (after 2 days of dealing with busted water pipes!). So I got back in my shop today, and took a few photos of the machine. The original design I saw on Youtube was a gizmo the fellow had mounted in the chuck of a drill press. Not willing to tie up my drill press for such purposes, I set about re-inventing the wheel (so to speak). I built a rack and pinion out of oak, which was carved by Mach3 on my CNC Router table. I mounted an aluminum block, which I had bored to function as the combination heater, and injector assembly. This block has four 350 cartridge heaters installed (one in each corner of the block, with the center bored 1" diameter to accommodate the 1" diameter plunger shaft). A cheap chinese purchase on ebay for the heat controller yielded a box which is at least useful for measuring the temperature. There is no output voltage to the relay, but is still useful for controlling the heat manually. (When the output light is on, I turn the heaters on, when the output light goes off, I turn the heaters off). This was my first purchase from a Chinese dealer on ebay, so.... Anyway, the first test of the machine revealed the importance of acurate heat control. Also, the reason the fellow I saw on Youtube is selling plastic beads for the injection molding machine he was selling. My thoughts of slicing up soda bottles, and feeding them into the funnel mounted on top of the aluminum block failed. The reason being, by the time one is able to drop enough of the little 1/2" square flakes of plastic into the cylinder to fill it, the plastic in the bottom is charred! Further experimentation with lower temperatures is on the agenda. But I can see a definite advantage in buying plastic beads which can be quickly poured into the cylinder, and immediately plunged into the mold. This project has been a real learning experience. The actual mold was a challenge in itself. I carved a wooden pattern using MechCAM Art of a 3D Heart with a Holy Cross in the center. Two concave images were carved into oak, to form the pattern for the mold. This pattern was then used to form a sand mold, and the actual mold was poured with molten aluminum from my foundery oven. After cooling, I mounted the mold onto my lathe, and faced off the mating surfaces of the mold to machine them flat. I then drilled guide holes in one half of the mold, and ended up carving a wooden positive image of the mold to act as a "Key" for aligning the first half of the mold to the second half (in order to determine exactly where the guide holes for the second half of the mold needed to be drilled for perfect alignment with the first half). I.E. I inserted the wooden Key into the first half of the mold, and placed the second half of the mold also onto the Key, and used the guide holes of the first half of the mold to locate the guide holes for the second half of the mold. I determined that the prime location for filling the mold was the base of the Heart, therefore the Heart would be injected upside down. I scribed a line from the center of the base of the Heart, to the edge of the mold to determine exactly where it needed to be drilled, then placed the assembled mold into the drill press vise, and drilled the mold halves at centerline where the two faces meet. I then filed two small scrathes into the face of one half of the mold, to create overflow ports to alert me when the mold is full. The machine I built features a vise assembly for holding the mold in alignment with the injector assembly. Linear rails were used to guide the injector to the center of the mold. However, further work is needed in my design. A locking mechanism needs to be added to keep the injector nozzle firmly inserted into the mold, while plunging the plastic into the mold (because the back pressure pushes it back out of the mold- I learned this the hard way). Anyway, here are a few pictures of the machine so far. Notice the "guillotine" shut-off valve. It's just a piece of angle steel mounted on a ball bearing slide assembly which is spring loaded. A wooden handle was needed to prevent burned hands, when opening the valve for a charge into the mold. The spring load was needed to immediately slam the valve shut, once the injector assembly has been raised 1/8" off the surface of the mold. It will probably take me a few days of experimenting with different temperatures, before I will get a successful cast. I have already learned, that if the plastic is heated too hot, or too long, it becomes a useless mass of brittle, black plastic. Instead of the clear plastic it started out as.
