The generator matrix
1 0 1 1 1 2 1 1 X 1 1 X+2 X 1 1 0 1 1 X+2 1 1 1 1 2 X X+2 X X X 2 2 2 X 2 X 2 0 X+2 2 X+2 0 2 X 1 1 1 1 1 1 2 1 1 0 1 X X+2 1 1 1 0 1 1
0 1 1 0 X+1 1 X+3 0 1 2 1 1 1 X 3 1 X X+1 1 X+2 X+1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 X+3 1 0 X 1 1 3 1 1 1 1 X X+3 3 1 0 1
0 0 X 0 0 0 0 X X+2 X X X X+2 X+2 2 2 2 X+2 X+2 X+2 X+2 2 2 2 X+2 0 2 0 0 X X+2 X+2 2 X 2 X+2 X X+2 2 2 X X+2 0 0 X+2 2 X X 0 0 X+2 2 0 0 X+2 X 0 0 X+2 2 2 X+2
0 0 0 X 2 X+2 X+2 X 2 2 X+2 X 0 0 0 2 2 2 X X+2 X X+2 X X+2 X+2 0 0 X X+2 0 2 X 2 X+2 X+2 X+2 2 2 2 X X 0 2 2 X+2 X 2 0 X X X 2 X 0 X 2 2 X X+2 0 0 0
generates a code of length 62 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 58.
Homogenous weight enumerator: w(x)=1x^0+238x^58+187x^60+212x^62+150x^64+208x^66+12x^68+12x^70+2x^74+1x^92+1x^96
The gray image is a code over GF(2) with n=248, k=10 and d=116.
This code was found by Heurico 1.16 in 1.3 seconds.