
What You should know about Modbus

2 What You should know about Modbus

2.1 Some Background

The Modbus protocol family was originally developed by Schneider Automation Inc. as
an industrial network for their Modicon programmable controllers.

Since then the Modbus protocol family has been established as vendor-neutral and open
communication protocols, suitable for supervision and control of automation equipment.

2.2 Technical Information

Modbus is a master/slave protocol with half-duplex transmission.

One master and up to 247 slave devices can exist per network.

The protocol defines framing and message transfer as well as data and control functions.

The protocol does not define a physical network layer. Modbus works on different phys-
ical network layers. The ASCII and RTU protocol operate on RS-232, RS-422 and RS-485
physical networks. The Modbus/TCP protocol operates on all physical network layers
supporting TCP/IP. This compromises 10BASE-T and 100BASE-T LANs as well as serial
PPP and SLIP network layers.

Note:

To utilise the multi-drop feature of Modbus, you need a multi-point network like RS-
485. In order to access a RS-485 network, you will need a protocol converter which
automatically switches between sending and transmitting operation. However some
industrial hardware platforms have an embedded RS-485 line driver and support en-
abling and disabling of the RS-485 transmitter via the RTS signal. FieldTalk supports
this RTS driven RS-485 mode.

2.2.1 The Protocol Functions

Modbus defines a set of data and control functions to perform data transfer, slave diagnos-
tic and PLC program download.

FieldTalk implements the most commonly used functions for data transfer as well as some
diagnostic functions. The functions to perform PLC program download and other device
specific functions are outside the scope of FieldTalk.

All Bit Access and 16 Bits Access Modbus Function Codes have been implemented. In
addition the most frequently used Diagnostics Function Codes have been implemented.
This rich function set enables a user to solve nearly every Modbus data transfer problem.

The following table lists the available Modbus Function Codes in this library:

3



FieldTalk Modbus Master C++ Library: Software manual

Function Code Current Terminology Classic Terminology

Bit Access
1 Read Coils Read Coil Status
2 Read Discrete Inputs Read Input Status
5 Write Single Coil Force Single Coil
15 (0F hex) Write Multiple Coils Force Multiple Coils

16 Bits Access
3 Read Multiple Registers Read Holding Registers
4 Read Input Registers Read Input Registers
6 Write Single Register Preset Single Register
16 (10 Hex) Write Multiple Registers Preset Multiple Registers
22 (16 hex) Mask Write Register Mask Write 4X Register
23 (17 hex) Read/Write Multiple

Registers
Read/Write 4X Registers

Diagnostics
7 Read Exception Status Read Exception Status
8 subcode 00 Diagnostics - Return

Query Data
Diagnostics - Return
Query Data

8 subcode 01 Diagnostics - Restart
Communications Option

Diagnostics - Restart
Communications Option

Vendor Specific
Advantech Send/Receive ADAM

5000/6000 ASCII
commands

2.2.2 How Slave Devices are identified

A slave device is identified with its unique address identifier. Valid address identifiers
supported are 1 to 247. Some library functions also extend the slave ID to 255, please check
the individual function’s documentation.

Some Modbus functions support broadcasting. With functions supporting broadcasting,
a master can send broadcasts to all slave devices of a network by using address identi-
fier 0. Broadcasts are unconfirmed, there is no guarantee of message delivery. Therefore
broadcasts should only be used for uncritical data like time synchronisation.

2.2.3 The Register Model and Data Tables

The Modbus data functions are based on a register model. A register is the smallest ad-
dressable entity with Modbus.

The register model is based on a series of tables which have distinguishing characteristics.
The four tables are:

4



What You should know about Modbus

Table Classic
Terminology

Modicon Register
Table

Characteristics

Discrete outputs Coils 0:00000 Single bit, alterable
by an application
program,
read-write

Discrete inputs Inputs 1:00000 Single bit, provided
by an I/O system,
read-only

Input registers Input registers 3:00000 16-bit quantity,
provided by an I/O
system, read-only

Output registers Holding registers 4:00000 16-bit quantity,
alterable by an
application
program,
read-write

The Modbus protocol defines these areas very loose. The distinction between inputs and
outputs and bit-addressable and register-addressable data items does not imply any slave
specific behaviour. It is very common that slave devices implement all tables as overlap-
ping memory area.

For each of those tables, the protocol allows a maximum of 65536 data items to be accessed.
It is slave dependant, which data items are accessible by a master. Typically a slave imple-
ments only a small memory area, for example of 1024 bytes, to be accessed.

2.2.4 Data Encoding

Classic Modbus defines only two elementary data types. The discrete type and the register
type. A discrete type represents a bit value and is typically used to address output coils
and digital inputs of a PLC. A register type represents a 16-bit integer value. Some man-
ufacturers offer a special protocol flavour with the option of a single register representing
one 32-bit value.

All Modbus data function are based on the two elementary data types. These elementary
data types are transferred in big-endian byte order.

Based on the elementary 16-bit register, any bulk information of any type can be exchanged
as long as that information can be represented as a contiguous block of 16-bit registers.
The protocol itself does not specify how 32-bit data and bulk data like strings is struc-
tured. Data representation depends on the slave’s implementation and varies from device
to device.

It is very common to transfer 32-bit float values and 32-bit integer values as pairs of two
consecutive 16-bit registers in little-endian word order. However some manufacturers like
Daniel and Enron implement an enhanced flavour of Modbus which supports 32-bit wide
register transfers. FielTalk supports Daniel/Enron 32-bit wide register transfers.

The FieldTalk Modbus Master Library defines functions for the most common tasks like:

• Reading and Writing bit values

• Reading and Writing 16-bit integers

5



FieldTalk Modbus Master C++ Library: Software manual

• Reading and Writing 32-bit integers as two consective registers

• Reading and Writing 32-bit floats as two consective registers

• Reading and Writing 32-bit integers using Daniel/Enron single register transfers

• Reading and Writing 32-bit floats using Daniel/Enron single register transfers

• Configuring the word order and representation for 32-bit values

2.2.5 Register and Discrete Numbering Scheme

Modicon PLC registers and discretes are addressed by a memory type and a register num-
ber or a discrete number, e.g. 4:00001 would be the first reference of the output registers.

The type offset which selects the Modicon register table must not be passed to the FieldTalk
functions. The register table is selected by choosing the corresponding function call as the
following table illustrates.

Master Function Call Modicon Register Table
readCoils(), writeCoil(),
forceMultipleCoils()

0:00000

readInputDiscretes 1:00000
readInputRegisters() 3:00000
writeMultipleRegisters(),
readMultipleRegisters(),
writeSingleRegister(),
maskWriteRegister(),
readWriteRegisters()

4:00000

Modbus registers are numbered starting from 1. This is different to the conventional pro-
gramming logic where the first reference is addressed by 0.

Modbus discretes are numbered starting from 1 which addresses the most significant bit
in a 16-bit word. This is very different to the conventional programming logic where the
first reference is addressed by 0 and the least significant bit is bit 0.

The following table shows the correlation between Discrete Numbers and Bit Numbers:

Modbus Discrete
Number

Bit Number Modbus Discrete
Number

Bit Number

1 15 (hex 0x8000) 9 7 (hex 0x0080)
2 14 (hex 0x4000) 10 6 (hex 0x0040)
3 13 (hex 0x2000) 11 5 (hex 0x0020)
4 12 (hex 0x1000) 12 4 (hex 0x0010)
5 11 (hex 0x0800) 13 3 (hex 0x0008)
6 10 (hex 0x0400) 14 2 (hex 0x0004)
7 9 (hex 0x0200) 15 1 (hex 0x0002)
8 8 (hex 0x0100) 16 0 (hex 0x0001)

When exchanging register number and discrete number parameters with FieldTalk func-
tions and methdos you have to use the Modbus register and discrete numbering scheme.
(Internally the functions will deduct 1 from the start register value before transmitting the
value to the slave device.)

6



What You should know about Modbus

2.2.6 The ASCII Protocol

The ASCII protocol uses an hexadecimal ASCII encoding of data and a 8 bit checksum.
The message frames are delimited with a ’:’ character at the beginning and a carriage
return/linefeed sequence at the end.

The ASCII messaging is less efficient and less secure than the RTU messaging and therefore
it should only be used to talk to devices which don’t support RTU. Another application of
the ASCII protocol are communication networks where the RTU messaging is not applica-
ble because characters cannot be transmitted as a continuos stream to the slave device.

The ASCII messaging is state-less. There is no need to open or close connections to a
particular slave device or special error recovery procedures.

A transmission failure is indicated by not receiving a reply from the slave. In case of a
transmission failure, a master simply repeats the message. A slave which detects a trans-
mission failure will discard the message without sending a reply to the master.

2.2.7 The RTU Protocol

The RTU protocol uses binary encoding of data and a 16 bit CRC check for detection of
transmission errors. The message frames are delimited by a silent interval of at least 3.5
character transmission times before and after the transmission of the message.

When using RTU protocol it is very important that messages are sent as continuous charac-
ter stream without gaps. If there is a gap of more than 3.5 character times while receiving
the message, a slave device will interpret this as end of frame and discard the bytes re-
ceived.

The RTU messaging is state-less. There is no need to open or close connections to a partic-
ular slave device or special error recovery procedures.

A transmission failure is indicated by not receiving a reply from the slave. In case of a
transmission failure, a master simply repeats the message. A slave which detects a trans-
mission failure will discard the message without sending a reply to the master.

2.2.8 The MODBUS/TCP Protocol

MODBUS/TCP is a TCP/IP based variant of the Modbus RTU protocol. It covers the use
of Modbus messaging in an ’Intranet’ or ’Internet’ environment.

The MODBUS/TCP protocol uses binary encoding of data and TCP/IP’s error detection
mechanism for detection of transmission errors.

In contrast to the ASCII and RTU protocols MODBUS/TCP is a connection oriented pro-
tocol. It allows concurrent connections to the same slave as well as concurrent connections
to multiple slave devices.

In case of a TCP/IP time-out or a protocol failure, a master shall close and re-open the
connection and then repeat the message.

7


