
Using Mach4 Signals-Intro

The overwhelming majority of new Mach4 users encounter the difficulty of 'How to monitor

an external signal, be it a switch or a button and have Mach respond to it?'

The preliminary is to connect the switch or button to a spare input on your controller/BoB

combination. Then using your controller plugin, and possibly the Mach Control plugin, to

logically connect that input to one of Machs predefined signals. For this example I'm

going to use ISIG_INPUT5.

Pin Configuration Page (Ethernet SmoothStepper Plugin)

Input Signal Page (Ethernet SmoothStepper Plugin)

You should confirm that Machs Control plugin has been udated, the Ethernet SmoothStepper

plugin automatically updates the Control plugin, but not all manufacturers plugins do so.

Mach Control Plugin, Input Signal Page

I elected to use Input#5 with malice aforethought because if you look at Mach4's Diagnostic

page there are LEDs reflecting the status of some of Machs signals, Input#5 amongst them.

Thus if you flick the switch or button you should see the inut LED alternately light then

unlight.

Mach4 Diagnostic Page-Input Signal LEDs

This is a very convenient and useful means to check the switch/button and its wiring,

the pin asignment of your controller/BoB and the logical connection of Machs signal

(ISIG_INPUT5).

The prelimnary is complete....the question is 'how we get Mach to recognize our newly

configured signal?'. There are two methods of use. The first method is appealing because

it is (comparatively) straight forward, but as we will see later inefficent and not preferred

despite that it works.

The first method is to use the PLC script. The PLC script is a bunch of Lua code that runs

every few milliseconds in Machs core. The code within the PLC script is deliberately kept

lean and mean so that it executes smartly so that it does not 'hang Mach up'.

We can use it to monitor an input signal like our button.

local inst=mc.mcGetInstance()

local input5Handle=mc.mcSignalGetHandle(inst,mc.ISIG_INPUT5)

local input5State=mc.mcSignalGetState(input5Handle)

If you have never encountered Mach4/Lua code before there may be some features that look

weird. I will explain a few of them. If you are already familiar with them skip over it.

The first is what does local at the beginning of each line mean? Lua is a self memory

managed language. When you declare variables for use they get allocated memory. When

they are no longer required (go out of scope) they will be 'Garbage Collected' and the

memory released. When you declare a variable as local when it goes out of scope the

Garbage Collector knows that its safe to remove the variable from memory. If that

same variable is not delcared local then it will be a global variable available througout

the Lua chunk in which it resides. That consumes memory that will not be garbage collected.

Also each time the variable is referenced Lua has to stop and resolve and acess the reference

which might be in another page of memory. The rule in Lua is variables should all be local

unless you have a specific reason to have the variable treated as global.

The second question is 'What is inst in the code'. While it is not implemented yet it is

intended that multiple copies of Mach4 can run at the same time. Thus each time you address

Machs core you need to specify which of the several instances you mean. At the current time

Mach has only one instance, instance=0, but you should get into the habit of interrogating

Mach to get the current instance number and declare a local variable inst to store it.

'Why are all the function calls prefaced by mc.mc.....?' Lua has only one data structure,

the table. It is very flexible despite its apparent simplicity. To access a member of a table

you prepend the name of the table, a period, then the name of the table member or entry.

For example: myTable.first(.....) acesses a table called myTable and addreses the

function first() in that table. So the syntax of mc.mcSignalGetHandle() say, now

becomes clear. All of Machs API functions are in a table called mc (Mach core) and the

particular API function you have called is mcSignalGetHandle(). Note that

mc.ISIG_INPUT5 is just another call to the mc table but in this instance it is

referencing a plain number (ISIG_INPUT5). This shows one of the strengths of Lua's

table, it can have different types as entries in the table. As in this example one table

entry is a function and another entry in the same table is a number, very clever!

It also is an example of the principle of a 'function as a first class value'. It means that a whole

function can be bandied around as if it were just another number. This apparetly

simple principle is a major part of what makes Lua so clever and will be used and reused

throughout Lua.

'What is mcSignalGetHandle(inst,mc.ISIG_INPUT5) all about?'. In Lua, in fact

probably all computer languages, a variable like ISIG_INPUT5 has a specific location

in memory and the computer wants to know the address or number of that location, the

name we humans give to the data is immaterial to the computer. Thus the statement we are

considering is aksing Lua to get the current memory location (or handle) of the variable

ISIG_INPUT5 and storing the address in the variable input5Handle.

So the last line of code:

local input5State=mc.mcSignalGetState(input5Handle)

means that the state (true or false/on or off) of the memory location described by

the number input5Handle is assinged to the variable input5State. It will be

'0' if the signal (swith or button) is off or '1' if the signal (switch or button) is on.

We could now use the variable input5State to decide whether to turn a pump on say.

This code in the PLC script will run every few milliseconds or hundreds of times a second.

If this is the switch to turn on your coolant pump, you'll turn it on and leave it on until

you part has finished. In the mean time the code in the PLC script has run many millons of

times. Really we only need to do anything once when the switch is turned on and then

again when the switch is turned off. Running the code millions of times just waiting for

you to operate the switch is a waste of computing power.

This method of monitoring inputs is called 'polling'. It will be familiar to anyone versed in

Mach3. Mach4 introduces a new and clever way to do the same thing WITHOUT all that

unecessary code overhead. Its an elegant method but does take some thinking to work it

out.

Mach has a whole bunch of signals, some you have seen like ISIG_INPUT5 and

others like OSIG_OUTPUT43 for example. These signals are intended for input

and output to Mach respectively. But they are by no means all of the signals Mach has

or uses. Machs core for instance may use a signal which we never see to tell the motion

controller to be ready to recieve an instruction from the trajectory planner. In short there

could be hundreds or thousands of signals between Machs core and all the devices

and their plugins in a second.

Each time ANY of those signals changes state, either turns on or off, Mach runs the Signal

Script. Mach does not know what to do with any such change all it knows is the number

of the signal called sig and its new state called state.

If for instance you turn on the switch Mach will detect that a signal has changed state,

it has a signal number 6 and its state is true or '1'. ISIG_INPUT5 is the human readable

version of the number 6. Machs Signal Script will run:

if SigLib[sig] ~= nil then

 SigLib[sig](state);

end

Note this is the Signal Script as it ships from NFS. You can if you wish or require modify it.

This introduces a new variable SigLib[sig], called the Signal Library Table. Specifically the

if statement asks 'is there an entry in the Signal Library Table that corresponds to sig, if

so, that is, not equal to nil, then execute the code in the table at the entry [sig]. If not,

that is to say there is no entry, we don't care about this signal then Mach goes back to

whatever it was doing before it ran the Signal Script.

The Signal Library Table is a global table near the top of the screen load script and is visible

throughout the Lua GUI chunk. We wish to put an entry into the table because we are

interested in sig=6, we want it to turn on our pump.

-- Signal Library

SigLib = {

 [mc.OSIG_MACHINE_ENABLED] = function (state)

 machEnabled = state;

 ButtonEnable()

end,

[mc.OSIG_JOG_CONT] = function (state)

 if(state == 1) then

 scr.SetProperty('labJogMode', 'Label', 'Continuous');

 scr.SetProperty('txtJogInc', 'Bg Color', '#C0C0C0');--Light Grey

 scr.SetProperty('txtJogInc', 'Fg Color', '#808080');--Dark Grey

 end

end,

[mc.OSIG_JOG_INC] = function (state)

 if(state == 1) then

 scr.SetProperty('labJogMode', 'Label', 'Incremental');

 scr.SetProperty('txtJogInc', 'Bg Color', '#FFFFFF');--White

 scr.SetProperty('txtJogInc', 'Fg Color', '#000000');--Black

 end

end,

[mc.OSIG_JOG_MPG] = function (state)

 if(state == 1) then

 scr.SetProperty('labJogMode', 'Label', '');

 scr.SetProperty('txtJogInc', 'Bg Color', '#C0C0C0');--Light Grey

 scr.SetProperty('txtJogInc', 'Fg Color', '#808080');--Dark Grey

 --add the bits to grey jog buttons becasue buttons can't be MPGs

 end

end,

--M6 messagebox

[mc.OSIG_TOOL_CHANGE] = function (state)

 local selectedtool = mc.mcToolGetSelected(inst)

 local currenttool = mc.mcToolGetCurrent(inst)

 if (selectedtool ~= currenttool) then

 if(state == 1) then

 mm.ToolChangeMsg("A tool change has been requested via M6.

Change your tool then press Cycle Start to continue!", "Tool Change Active!")

 end

 end

end

}

Note that this is the Signal Library, or close to,as it ships from NFS.

The first line:

SigLib = { is the opening statement of the defintion of the table SigLib as indicated

with the opening { . Note also the very last line, } , that is the closing statement of the

table definition with a series of comma separated entries.

The next lines are:

 [mc.OSIG_MACHINE_ENABLED] = function (state)

 machEnabled = state;

 ButtonEnable()

end,

This creates an entry in the Signal Library called [mc.OSIG_MACHINE_ENABLED] .

Thus if the signal OSIG_MACHINE_ENABLED ever changes state then the function

will run, in this case it upadtes a variable machEnabled and then runs the function

ButtonEnable() defined elsewhere. Note also the comma end, after the function

end statement, it signifies the end of this entry or member of the table.

The next lines introduce yet another entry, and when it is declared it will be closed with

a trailing comma. Its very easy to forget the comma and you get some strange errors.

We want to create a new entry in the Signal Library Table:

[mc.ISIG_INPUT5]=function(state)

 if (state==1)then

 --run some code to turn the pump on

 else

 --run some code to turn the pump off

 end

end,

So if the signal ISIG_INPUT5 changes state then the function will run. Note that it tests

the value of state, if its on (==1) then it will run the code required to turn on. It might be

that we have just flicked the switch to off, and so state will be (==0) and thus we want to

turn the pump off.

The only time the function will run is when the signal changes state, either we turn the

switch on or later in the day turn it off again. Whereas the code in the PLC script will have

run many millions of times.

It is an efficient and elegant way to monitor an input. It relies on several key principles

of Lua.

1) Lua detects a change in any and all of it defined signals

2) Mach has a Signal Script that runs whenever a defined signal changes state

3) The Signal Script interrogates the Signal Library table (SigLib) for an entry or member

 that has the same signal number

4) If so the function executes, the function being treated as a first class value.

